Information, Communication and Imaging Research Group

The ICI group’s research focus is on wireless communications, information theory, signal processing and imaging. The key application areas covered by the group's research output lie primarily on 5G/6G, IoT and machine learning for communications; coding and information theoretic security; networking and edge computing; imaging and modelization.

Faculty

Research Areas

The ICI group’s research focus is on core topics on wireless communications, information theory, signal processing and MAC / network slicing. Current research topics are pertinent to IoT verticals (with emphasis on V2X and Smart factories) and lie primarily on the following domains:

o   – Wireless comms / PHY aspects: resource allocation and optimization, low energy (green AI, energy harvesting), low latency (short packet comms, finite blocklength, effective capacity and delay QoS), localization for mmWave and subTHz, waveform design, ML for communications;

o   – Coding and information theory: rate-adaptable codes for IoT, short blockelength code design, graph / polar / lattices codes, etc., interplay between information theory and game theory;

o   – Networking slicing and caching, including: slicing, coding in Named Data Networks, layer 2 scheduling, energy efficient protocols, coexistence of heterogeneous services;

o   – Security for wireless communications including: physical layer security, jamming and active attacks at RAN, cross-layer anomaly detection, physical unclonable functions, lattice based cryptography, privacy.

Projets

2021-2025 EUTOPIA PhD cofund WALL-EE: Wide-area Adaptive control in InteLLigent cyber-physical power systems exploiting dEEP reinforcement learning

  • Partners: CY Cergy Paris Univ. and Warwick University
  • PI : Veronica Belmega (ETIS)
  • Co-PI: Subhash Lakshminarayana (Warwick University)
  • Collaborator: Vincent H. Poor (Princeton University)
  • Funding: PhD student Sajjad Maleki

2021-2024 DIMMath’Innov (Région île de France): Apports de l’intelligence artificielle, modélisation mathématique et optimisation en imagerie

  • PI: Mai K. Nguyen-Verger (ETIS)
  • Partners: Laboratoire Analyse, Géométrie, Modélisation (AGM) CY Cergy Paris Université – CNRS UMR 8088
  • Funding: PhD student Ishak Ayad

2020-2024 PHEBE:  Physical-Layer Security for Beyond 5G 

  • Funded by the CY Initiative d’Excellence Ambition program
  • PI: Ligong Wang (ETIS)
  • Participants: Marwa Chafii, Arsenia Chorti, Maël Le Treust, Laura Luzzi (ETIS)
  • Funding: Postdocs Wafa Njima and Muralikrishnan Srinivasan, PhD student Cécile Bouette

2020-2023 POTIONS: cooPeration, Optimization and arTificial Intelligence for future communicatiONs: interplay between model-based and data-driven approacheS

  • Partners: IMT Lille Douai, CY Cergy Paris Univ. (ED EM2PSI)
  • PI: Anne Savard (IMT Lille Douai)
  • Collaborators: Veronica Belmega (ETIS), Romain Negrel (ESIEE Paris), Mehdi Bennis (Univ. of Oulu, Finland)
  • Funding: PhD student Yacine Ben Atia, 2022 mobility to Univ. of Oulu

2019-2023 ANR QCSP (Quasi-Cyclic Short Packet)

  • PI: Emmanuel Boutillon (Université de Bretagne Sud)
  • Partners: Université de Bretagne Sud, IMT Atlantique, ETIS, IPB/ENSEIRB-MATMECA, Orange Labs, Sequans, CEA-LETI
  • Participants from ETIS: Fakhreddine Ghaffari (CELL), Laura Luzzi (ICI)
  • Funding: Postdoc Franklin Cochachin

2019-2023 ANR PRCI ELIOT: Enabling technologies for IoT

  • https://eliot.ensea.fr/
  • International (French-Brazilian) collaborative project
  • PI : Veronica Belmega (ETIS)
  • Partners: ETIS/ENSEA, University of Sao Paulo (USP) and Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
  • Brazilian PIs: Vitor Nascimento (USP), Cintia Borges Margi (USP), Rodrigo C. Delamare (PUC-Rio)
  • Members: Arsenia Chorti (ETIS), Iryna Andriyanova (ETIS), Inbar Fijalkow (ETIS), Jordane Lorandel (ETIS), Cassio Guimaraes Lopes (USP), Lukas Landau (PUC-Rio), …
  • Funding: PhD student Hajar El Hassani

2018 – 2024 PIA 3 project EcobioH2: Démonstrateur d’un stockage hybride pour un éco-îlot

  • https://ecobioh2.ensea.fr/
  • Projet accompagné par l’ADEME dans le cadre du PIA3
  • ETIS-PI : Inbar Fijalkow
  • Members : Iryna Andriyanova (ETIS), Pierre Andry (ETIS)
  • Partners: Ecobio, ETIS/ENSEA, Enercoop
  • Funding: PhD students Louis Desportes and Muhammad Ali

2018-2021 DIMMath’Innov (Région île de France): Modélisation de la tomographie Compton et problèmes inverses associés

  • PI: Mai K. Nguyen-Verger (ETIS)
  • Partners: Laboratoire de Mathématiques de Versailles (LMV) UVSQ-Paris Saclay Université – CNRS UMR 8100 
  • Funding: PhD student Cécilia Tarpau 

2018-2021 LabEx MME-DII (ANR-11-LBX-0023-01) : Nouveau concept de la Tomographie Compton Circulaire

  • PI: Mai K. Nguyen-Verger (ETIS)
  • Partners: Laboratoire de Physique Théorique et Modélisation  (LPTM) CY Cergy Paris Université – CNRS UMR 8089
  • Funding: PhD student Cécilia Tarpau

Voir aussi dans «Research»

CELL Research Group CELL is a multidisciplinary team working in the field of Electronics, Signal and Image Processing for the Modeling and Design of Reconfigurable, Communicating, Reliable and Intelligent Embedded Systems. Members of the team are experts in complementary scientific areas from Microelectronics to Computer-Vision and Digital Electronics. The team also gathers associated researchers from external institutions (APHP, Foreign Universities) whose expertises refer to the specific application domain of the research projects (biologists, physicians). Main application domains are Health, IoT, Security, Autonomous Vehicle, Software Radio and Telecoms. Multimedia, Indexing and Data Integration Group The MIDI group works in the field of Big Data Management and Analytics, addressing topics that include integrating, mining, analyzing and querying large volumes of various types of data, ranging from structured and semi-structured data, to spatiotemporal data, text, image, video and 3D models. A particular emphasis is put on the design and use of Machine Learning techniques in contexts specific to data analysis and data processing problems, with a focus on the explainability and transparency of such algorithms. Applications include social media content and graph analytics, semantic web data integration and analysis, pattern detection in image, video and multimodal data, search engines for different types of data, knowledge extraction from data, data privacy, etc. The application domains are vast, such as cultural heritage, security, opinion mining, health, etc. NEURO group Our group pushes forward embodiment and bio-inspiration toward cognitive and social robots, autonomous and embodied AI. We investigate biological models for human-level cognition and interact with developmental psychologists and neuroscientists.